Mark (√) against the correct answer in the following:

Question:

Mark (√) against the correct answer in the following:

Let $f(x)=e^{\sqrt{x^{2}-1}} \cdot \log (x-1) .$ Then, dom $(f)=?$

A. $(-\infty, 1]$

B. $[-1, \infty)$

C. $(1, \infty)$

D. $(-\infty,-1] \cup(1, \infty)$

 

Solution:

$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\sqrt{\mathrm{x}^{2}-1}} \log (\mathrm{x}-1)$

$x-1>0$

$\Rightarrow x>1$

And

$\Rightarrow \mathrm{x}^{2}-1 \geq 0$

$\Rightarrow \mathrm{x}^{2} \geq 1$

$\Rightarrow-1 \leq \mathrm{x} \geq 1$

Taking the intersection we get

$\operatorname{Dom}(f)=(1, \infty)$

 

Leave a comment