Question:
Mark (✓) against the correct answer:
On selling a chair for Rs 680, a man loses 15%. To gain 15%, it must be sold for
(a) Rs 800
(b) Rs 860
(c) Rs 920
(d) Rs 884
Solution:
(c) Rs 920
$\mathrm{SP}=\mathrm{Rs} 680$
Loss percentage $=15 \%$
Now, $\mathrm{CP}=\left\{\frac{100}{(100-\text { loss } \%)} \times \mathrm{SP}\right\}$'$=$ Rs. $\left\{\frac{100}{(100-15)} \times 680\right\}$
$=$ Rs. $\left(\frac{100}{85} \times 680\right)$
$=$ Rs. 800
$\therefore$ Desired SP $=\left\{\frac{(100+\text { gain } \%)}{100} \times \mathrm{CP}\right\}$
$=\operatorname{Rs}\left\{\frac{(100+15)}{100} \times 800\right\}$
$=\operatorname{Rs}\left(\frac{115}{100} \times 800\right)$
$=\operatorname{Rs} 920$