Manufacturer can sell $x$ items at a price of rupees $\left(5-\frac{x}{100}\right)$ each. The cost price is Rs $\left(\frac{x}{5}+500\right) .$ Find the number of items he should sell to earn maximum profit.
Profit =S.P. - C.P.
$\Rightarrow P=x\left(5-\frac{x}{100}\right)-\left(500+\frac{x}{5}\right)$
$\Rightarrow P=5 x-\frac{x^{2}}{100}-500-\frac{x}{5}$
$\Rightarrow \frac{d P}{d x}=5-\frac{x}{50}-\frac{1}{5}$
For maximum or minimum values of $P$, we must have
$\frac{d P}{d x}=0$
$\Rightarrow 5-\frac{x}{50}-\frac{1}{5}=0$
$\Rightarrow \frac{24}{5}=\frac{x}{50}$
$\Rightarrow x=\frac{24 \times 50}{5}$
$\Rightarrow x=240$
Now,
$\frac{d^{2} P}{d x^{2}}=\frac{-1}{50}<0$
So, the profit is maximum if 240 items are sold.
Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.