Question:
Making use of the cube root table, find the cube root
7342
Solution:
We have:
$7300<7342<7400 \Rightarrow \sqrt[3]{7000}<\sqrt[3]{7342}<\sqrt[3]{7400}$
From the cube root table, we have:
$\sqrt[3]{7300}=19.39$ and $\sqrt[3]{7400}=19.48$
For the difference $(7400-7300)$, i.e., 100 , the difference in values
$=19.48-19.39=0.09$
$\therefore$ For the difference of $(7342-7300)$, i.e., 42 , the difference in the values
$=\frac{0.09}{100} \times 42=0.0378=0.037$
$\therefore \sqrt[3]{7342}=19.39+0.037=19.427$