Question:
Making use of the cube root table, find the cube root
8.6
Solution:
The number $8.6$ can be written as $\frac{86}{10}$.
Now
$\sqrt[3]{8.6}=\sqrt[3]{\frac{86}{10}}=\frac{\sqrt[3]{86}}{\sqrt[3]{10}}$
By cube root table, we have:
$\sqrt[3]{86}=4.414$ and $\sqrt[3]{10}=2.154$
$\therefore \sqrt[3]{8.6}=\frac{\sqrt[3]{86}}{\sqrt[3]{10}}=\frac{4.414}{2.154}=2.049$
Thus, the required cube root is 2.049.