Question:
Making use of the cube root table, find the cube root
9800
Solution:
We have:
$9800=98 \times 100$
$\therefore \sqrt[3]{9800}=\sqrt[3]{98 \times 100}=\sqrt[3]{98} \times \sqrt[3]{100}$
By cube root table, we have:
$\sqrt[3]{98}=4.610$ and $\sqrt[3]{100}=4.642$
$\therefore \sqrt[3]{9800}=\sqrt[3]{98} \times \sqrt[3]{100}=4.610 \times 4.642=21.40$ (upto three decimal places)
Thus, the required cube root is 21.40.