Question:
Making use of the cube root table, find the cube root
5112
Solution:
By prime factorisation, we have:
$5112=2^{3} \times 3^{2} \times 71 \Rightarrow \sqrt[3]{5112}=2 \times \sqrt[3]{9} \times \sqrt[3]{71}$'
By the cube root table, we have:
$\sqrt[3]{9}=2.080$ and $\sqrt[3]{71}=4.141$
$\therefore \sqrt[3]{5112}=2 \times \sqrt[3]{9} \times \sqrt[3]{71}=2 \times 2.080 \times 4.141=17.227$ (upto three decimal places)
Thus, the required cube root is 17.227.