Question:
Making use of the cube root table, find the cube root
7532
Solution:
We have:
$7500<7532<7600 \Rightarrow \sqrt[3]{7500}<\sqrt[3]{7532}<\sqrt[3]{7600}$
From the cube root table, we have:
$\sqrt[3]{7500}=19.57$ and $\sqrt[3]{7600}=19.66$
For the difference $(7600-7500)$, i.e., 100 , the difference in values
$=19.66-19.57=0.09$
$\therefore$ For the difference of $(7532-7500)$, i.e., 32 , the difference in values
$=\frac{0.09}{100} \times 32=0.0288=0.029$ (up to three decimal places)
$\therefore \sqrt[3]{7532}=19.57+0.029=19.599$