Question:
Making use of the cube root table, find the cube root
7000
Solution:
We have:
$\therefore \sqrt[3]{7000}=\sqrt[3]{7 \times 1000}=\sqrt[3]{7} \times \sqrt[3]{1000}$
By the cube root table, we have:
$\sqrt[3]{7}=1.913$ and $\sqrt[3]{1000}=10$
$\therefore \sqrt[3]{7000}=\sqrt[3]{7} \times \sqrt[3]{1000}=1.913 \times 10=19.13$