Question:
Making use of the cube root table, find the cube root
1346
Solution:
By prime factorisation, we have:
$1346=2 \times 673 \Rightarrow \sqrt[3]{1346}=\sqrt[3]{2} \times \sqrt[3]{673}$
Also
$670<673<680 \Rightarrow \sqrt[3]{670}<\sqrt[3]{673}<\sqrt[3]{680}$
From the cube root table, we have:
$\sqrt[3]{670}=8.750$ and $\sqrt[3]{680}=8.794$
For the difference (680
$=8.794-8.750=0.044$
$\therefore$ For the difference of $(673-670)$, i.e., 3 , the difference in the values
$=\frac{0.044}{10} \times 3=0.0132=0.013$ (upto three decimal places)
$\therefore \sqrt[3]{673}=8.750+0.013=8.763$
Now
$\sqrt[3]{1346}=\sqrt[3]{2} \times \sqrt[3]{673}=1.260 \times 8.763=11.041$ (upto three decimal places)
Thus, the answer is 11.041.