Question:
Making use of the cube root table, find the cube root
133100
Solution:
We have:
$133100=1331 \times 100 \Rightarrow \sqrt[3]{133100}=\sqrt[3]{1331 \times 100}=11 \times \sqrt[3]{100}$
By cube root table, we have:
$\sqrt[3]{100}=4.642$
$\therefore \sqrt[3]{133100}=11 \times \sqrt[3]{100}=11 \times 4.642=51.062$