Making use of the cube root table,

Question:

Making use of the cube root table, find the cube root
133100

Solution:

We have:

$133100=1331 \times 100 \Rightarrow \sqrt[3]{133100}=\sqrt[3]{1331 \times 100}=11 \times \sqrt[3]{100}$

By cube root table, we have: 

$\sqrt[3]{100}=4.642$

$\therefore \sqrt[3]{133100}=11 \times \sqrt[3]{100}=11 \times 4.642=51.062$

 

Leave a comment