Making use of the cube root table,

Question:

Making use of the cube root table, find the cube root
732

Solution:

We have:

$730<732<740 \Rightarrow \sqrt[3]{730}<\sqrt[3]{732}<\sqrt[3]{740}$

From cube root table, we have:

$\sqrt[3]{730}=9.004$ and $\sqrt[3]{740}=9.045$

For the difference $(740-730)$, i.e., 10 , the difference in values

$=9.045-9.004=0.041$

$\therefore$ For the difference of $(732-730)$, i.e., 2 , the difference in values

$=\frac{0.041}{10} \times 2=0.0082$

$\therefore \sqrt[3]{732}=9.004+0.008=9.012$

Leave a comment