Question:
Making use of the cube root table, find the cube root
732
Solution:
We have:
$730<732<740 \Rightarrow \sqrt[3]{730}<\sqrt[3]{732}<\sqrt[3]{740}$
From cube root table, we have:
$\sqrt[3]{730}=9.004$ and $\sqrt[3]{740}=9.045$
For the difference $(740-730)$, i.e., 10 , the difference in values
$=9.045-9.004=0.041$
$\therefore$ For the difference of $(732-730)$, i.e., 2 , the difference in values
$=\frac{0.041}{10} \times 2=0.0082$
$\therefore \sqrt[3]{732}=9.004+0.008=9.012$