Locate $\sqrt{3}$ on the number line.
To represent $\sqrt{3}$ on the number line, follow the following steps of construction:
(i) Mark points 0 and 1 as $\mathrm{O}$ and $\mathrm{A}$, respectively.
(ii) At point $A$, draw $A B \perp O A$ such that $A B=1$ units.
(iii) Join OB.
(iv) At point $B$, draw $D B \perp O A$ such that $D B=1$ units.
(v) Join OD.
(vi) With $O$ as centre and radius $O D$, draw an arc intersecting the number line at point $Q$.
Thus, point $Q$ represents $\sqrt{3}$ on the number line.
Justification:
In right OAB,Using Pythagoras theorem,
$\mathrm{OB}=\sqrt{\mathrm{OA}^{2}+\mathrm{AB}^{2}}$
$=\sqrt{1^{2}+1^{2}}$
$=\sqrt{1+1}$
$=\sqrt{2}$
Again, in right $\triangle O D B$,
Using Pythagoras theorem,
$\mathrm{OD}=\sqrt{\mathrm{OB}^{2}+\mathrm{DB}^{2}}$
$=\sqrt{(\sqrt{2})^{2}+1^{2}}$
$=\sqrt{2+1}$
$=\sqrt{3}$