Question.
$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}$
$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}$
solution:
Given $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}$
Consider $\sqrt{3} \sin x-\cos x=2\left(\frac{\sqrt{3} \sin x}{2}-\frac{\cos x}{2}\right)=2\left(\sin x \cos \left(\frac{\pi}{6}\right)-\cos x \sin \left(\frac{\pi}{6}\right)\right)$
On simplification the above equation can be written as
$\Rightarrow$$2\left(\sin x \cos \left(\frac{\pi}{6}\right)-\cos x \sin \left(\frac{\pi}{6}\right)\right)=2 \sin \left(x-\frac{\pi}{6}\right)$
$\Rightarrow$$\sqrt{3} \sin x-\cos x=2 \sin \left(x-\frac{\pi}{6}\right)$
Now by substituting these values in given equation we get
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}=\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}$
Taking constant term 2 outside
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}=2 \lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}$
Now as $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Now by applying the limit we get
$\Rightarrow$$2 \lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}=2.1=2$
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{0}}=2$
Given $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}$
Consider $\sqrt{3} \sin x-\cos x=2\left(\frac{\sqrt{3} \sin x}{2}-\frac{\cos x}{2}\right)=2\left(\sin x \cos \left(\frac{\pi}{6}\right)-\cos x \sin \left(\frac{\pi}{6}\right)\right)$
On simplification the above equation can be written as
$\Rightarrow$$2\left(\sin x \cos \left(\frac{\pi}{6}\right)-\cos x \sin \left(\frac{\pi}{6}\right)\right)=2 \sin \left(x-\frac{\pi}{6}\right)$
$\Rightarrow$$\sqrt{3} \sin x-\cos x=2 \sin \left(x-\frac{\pi}{6}\right)$
Now by substituting these values in given equation we get
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}=\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}$
Taking constant term 2 outside
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}=2 \lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}$
Now as $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Now by applying the limit we get
$\Rightarrow$$2 \lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{x-\frac{\pi}{6}}=2.1=2$
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{0}}=2$