Question.
$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}$
$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}$
solution:
Given $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}$
We know that
$\cot ^{2} x=\operatorname{cosec}^{2} x-1$
By using this in given equation we get
$\Rightarrow$ $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(\operatorname{cosec}^{2} x-1\right)-3}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2}$
Again using $a^{2}-b^{2}$ identity the above equation can be written as
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{6}} \frac{(\operatorname{cosec} x-2)(\operatorname{cosec} x+2)}{\operatorname{cosec} x-2}$
On simplification and applying the limits we get
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{(\operatorname{cosec} x-2)(\operatorname{cosecx}+2)}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{6}}(\operatorname{cosecx}+2)=2+2=4$
$\Rightarrow$$\lim _{x \rightarrow \frac{-1}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}=4$
Given $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}$
We know that
$\cot ^{2} x=\operatorname{cosec}^{2} x-1$
By using this in given equation we get
$\Rightarrow$ $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(\operatorname{cosec}^{2} x-1\right)-3}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2}$
Again using $a^{2}-b^{2}$ identity the above equation can be written as
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{6}} \frac{(\operatorname{cosec} x-2)(\operatorname{cosec} x+2)}{\operatorname{cosec} x-2}$
On simplification and applying the limits we get
$\Rightarrow$$\lim _{x \rightarrow \frac{\pi}{6}} \frac{(\operatorname{cosec} x-2)(\operatorname{cosecx}+2)}{\operatorname{cosec} x-2}=\lim _{x \rightarrow \frac{\pi}{6}}(\operatorname{cosecx}+2)=2+2=4$
$\Rightarrow$$\lim _{x \rightarrow \frac{-1}{6}} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}=4$