Question.
$\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}$
$\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}$
solution:
Given $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{2}}$
We know that $\sin 2 x=2 \sin x \cos x$, using this formula we get
Again by taking $2 \sin x$ common we get
$\lim _{x \rightarrow 0} \frac{2 \sin x-2 \sin x \cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin x(1-\cos x)}{x^{3}}$
Now we have $\cos x=1-2 \sin ^{2}(x / 2)$
Using this identity above equation can be written as
$\lim _{x \rightarrow 0} \frac{2 \sin x(1-\cos x)}{x^{3}}=\lim _{x \rightarrow 0} \frac{2 \sin x\left(1-\left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)\right.}{x^{3}}$
On simplifying we get
$\Rightarrow \lim _{x \rightarrow 0} \frac{2 \sin x\left(1-\left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)\right.}{x^{3}} \lim _{x \rightarrow 0} \frac{4 \sin x \sin ^{2}\left(\frac{x}{2}\right)}{x^{3}}$
Given $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{2}}$
We know that $\sin 2 x=2 \sin x \cos x$, using this formula we get
Again by taking $2 \sin x$ common we get
$\lim _{x \rightarrow 0} \frac{2 \sin x-2 \sin x \cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin x(1-\cos x)}{x^{3}}$
Now we have $\cos x=1-2 \sin ^{2}(x / 2)$
Using this identity above equation can be written as
$\lim _{x \rightarrow 0} \frac{2 \sin x(1-\cos x)}{x^{3}}=\lim _{x \rightarrow 0} \frac{2 \sin x\left(1-\left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)\right.}{x^{3}}$
On simplifying we get
$\Rightarrow \lim _{x \rightarrow 0} \frac{2 \sin x\left(1-\left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)\right.}{x^{3}} \lim _{x \rightarrow 0} \frac{4 \sin x \sin ^{2}\left(\frac{x}{2}\right)}{x^{3}}$