Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0 be defined as
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0 be defined as
$(a, b) R(c, d) \Leftrightarrow a d=b c$ for all $(a, b),(c, d) \in Z \times Z_{0}$
Prove that R is an equivalence relation on Z × Z0.
We observe the following properties of R.
Reflexivity:
Let $(a, b)$ be an arbitrary element of $\mathrm{Z} \times \mathrm{Z}_{0}$. Then,
$(a, b) \in \mathrm{Z} \times \mathrm{Z}_{0}$
$\Rightarrow a, b \in \mathrm{Z}, \mathrm{Z}_{0}$
$\Rightarrow a b=b a$
$\Rightarrow(a, b) \in R$ for all $(a, b) \in Z \times Z_{0}$
So, $R$ is reflexive on $Z \times Z_{0}$.
Symmetry:
Let $(a, b),(c, d) \in Z \times Z_{0}$ such that $(a, b) R(c, d)$. Then,
$(a, b) R(c, d)$
$\Rightarrow a d=b c$
$\Rightarrow c b=d a$
$\Rightarrow(c, d) R(a, b)$
Thus,
$(a, b) R(c, d) \Rightarrow(c, d) R(a, b)$ for all $(a, b),(c, d) \in Z \times Z_{0}$
So, $R$ is symmetric on $Z \times Z_{0}$.
Transitivity:
Let $(a, b),(c, d),(e, f) \in N \times N_{0}$ such that $(a, b) R(c, d)$ and $(c, d) R(e, f) .$ Then,
$\left.\begin{array}{l}(a, b) R(c, d) \Rightarrow a d=b c \\ (c, d) R(e, f) \Rightarrow c f=d e\end{array}\right\} \Rightarrow(a d)(c f)=(b c)(d e)$
$\Rightarrow a f=b e$
$\Rightarrow(a, b) R(e, f)$
Thus,
$(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow(a, b) R(e, f)$
$\Rightarrow(a, b) R(e, f)$ for all values $(a, b),(c, d),(e, f) \in N \times N_{0}$
So, $R$ is transitive on $N \times N_{0}$.