Let $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x$
$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $y(0)=1$. Then :
Correct Option: , 2
$\frac{d y}{d x}+y(\tan x)=2 x+x^{2} \tan x$
I.F $=e^{\int \tan x d x}=e^{\ln \cdot \sec x}=\sec x$
$\therefore y \cdot \sec x=\int\left(2 x+x^{2} \tan x\right) \sec x \cdot d x$
$=\int 2 x \sec x d x+\int x^{2}(\sec x \cdot \tan x) d x$
$y \sec x=x^{2} \sec x+\lambda$
$\Rightarrow y=x^{2}+\lambda \cos x$
$y(0)=0+\lambda=1 \quad \Rightarrow \lambda=1$
$y=x^{2}+\cos x$
$y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{16}+\frac{1}{\sqrt{2}}$
$y\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{16}+\frac{1}{\sqrt{2}}$
$y^{\prime}(x)=2 x-\sin x$
$y^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi}{2}-\frac{1}{\sqrt{2}}$
$y^{\prime}\left(\frac{-\pi}{4}\right)=\frac{-\pi}{2}+\frac{1}{\sqrt{2}}$
$y^{\prime}\left(\frac{\pi}{4}\right)-y^{\prime}\left(\frac{-\pi}{4}\right)=\pi-\sqrt{2}$