Let $y=y(x)$ be the solution of the differential equation,
$\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1$. If $y(\pi)=a$ and
$\frac{d y}{d x}$ at $x=\pi$ is $b$, then the ordered pair $(a, b)$ is equal to :
Correct Option: , 3
The given differential equation is
$\frac{2+\sin x}{y+1} \frac{d y}{d x}=-\cos x, y>0$
$\Rightarrow \frac{d y}{y+1}=-\frac{\cos x}{2+\sin x} d x$
Integrate both sides,
$\int \frac{d y}{y+1}=\int \frac{(-\cos x) d x}{2+\sin x}$
$\ln |y+1|=-\ln |2+\sin x|+\ln C$
$\Rightarrow \ln |y+1|+\ln |2+\sin x|=\ln C$
$\Rightarrow \ln |(y+1)(2+\sin x)|=\ln C$
$\because y(0)=1 \Rightarrow \ln 4=\ln C \Rightarrow C=4$
$\therefore(y+1)(2+\sin x)=4$
$\Rightarrow y=\frac{4}{2+\sin x}-1$
$\therefore y=\frac{2-\sin x}{2+\sin x} \Rightarrow y(\pi)=\frac{2-\sin \pi}{2+\sin \pi}=1$
$\Rightarrow a=1$
Now, $\frac{d y}{d x}=\frac{(2+\sin x)(-\cos x)-(2-\sin x) \cdot \cos x}{(2+\sin x)^{2}}$
$\left.\frac{d y}{d x}\right|_{x=\pi}=1 \Rightarrow b=1 .$
Ordered pair $(a, b)=(1,1)$