Let $y(x)$ be the solution of the differential equation $2 x^{2} d y+\left(e^{y}-2 x\right) d x=0, x>0$. If $y(e)=1$, then $\mathrm{y}(1)$ is equal to :
Correct Option: , 3
$2 x^{2} d y+\left(e^{y}-2 x\right) d x=0$
$\frac{d y}{d x}+\frac{e^{y}-2 x}{2 x^{2}}=0 \Rightarrow \frac{d y}{d x}+\frac{e^{y}}{2 x^{2}}-\frac{1}{x}=0$
$e^{-y} \frac{d y}{d x}-\frac{e^{-y}}{x}=-\frac{1}{2 x^{2}} \Rightarrow$ Put $e^{-y}=z$
$\frac{-d z}{d x}-\frac{z}{x}=-\frac{1}{2 x^{2}} \Rightarrow x d z+z d x=\frac{d x}{2 x}$
$\mathrm{d}(\mathrm{xz})=\frac{\mathrm{dx}}{2 \mathrm{x}} \Rightarrow \mathrm{xz}=\frac{1}{2} \log _{\mathrm{e}} \mathrm{x}+\mathrm{c}$
$\mathrm{xe}^{-\mathrm{y}}=\frac{1}{2} \log _{\mathrm{e}} \mathrm{x}+\mathrm{c}$, passes through $(\mathrm{e}, 1)$
$\Rightarrow \mathrm{C}=\frac{1}{2}$
$x e^{-y}=\frac{\log _{e} e x}{2}$
$\mathrm{e}^{-\mathrm{y}}=\frac{1}{2} \Rightarrow \mathrm{y}=\log _{\mathrm{e}} 2$