Let [x] denote the greatest integer less than or equal

Question:

Let $[x]$ denote the greatest integer less than or equal to $x$. Then, the values of $x \in \mathbf{R}$ satisfying the equation $\left[e^{x}\right]^{2}+\left[e^{x}+1\right]-3=0$ lie in the interval:

  1. $\left[0, \frac{1}{\mathrm{e}}\right)$

  2. $\left[\log _{e} 2, \log _{e} 3\right)$

  3. $[1, \mathrm{e})$

  4. $\left[0, \log _{\mathrm{e}} 2\right)$


Correct Option: , 4

Solution:

$\left[e^{x}\right]^{2}+\left[e^{x}+1\right]-3=0$

$\Rightarrow\left[e^{x}\right]^{2}+\left[e^{x}\right]+1-3=0$

Let $\left[e^{x}\right]=t$

$\Rightarrow \mathrm{t}^{2}+\mathrm{t}-2=0$

$\Rightarrow \mathrm{t}=-2,1$

$\left[e^{x}\right]=-2$ (Not possible)

or $\left[e^{x}\right]=1 \quad \therefore 1 \leq e^{x}<2$

$\Rightarrow \quad \ln (1) \leq x<\ln (2)$

$\Rightarrow \quad 0 \leq x<\ln (2)$

$\Rightarrow \quad x \in[0, \ln 2)$

Leave a comment