Let the vectors $\vec{a}$ and $\vec{b}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between $\vec{a}$ and $\vec{b}$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
It is given that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$.
We know that $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$, where $\hat{n}$ is a unit vector perpendicular to both $\vec{a}$ and $\vec{b}$ and $\theta$ is the angle between $\vec{a}$ and $\vec{b}$.
Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}|=1$.
$|\vec{a} \times \vec{b}|=1$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta \hat{n} \mid=1$
$\Rightarrow|\vec{a}||\vec{b}||\sin \theta|=1$
$\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta=1$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between $\vec{a}$ and $\vec{b}$ is $\frac{\pi}{4}$.
The correct answer is B.