Let the plane passing through the point $(-1,0,-2)$

Question:

Let the plane passing through the point $(-1,0,-2)$ and perpendicular to each of the planes $2 x+y-z=2$ and $x-y-z=3$ be $a x+b y+c z+8=0$. Then the value of $a+b+c$ is equal to:

  1. 3

  2. 8

  3. 5

  4. 4


Correct Option: , 4

Solution:

Normal of req. plane $(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \times(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$

$=-2 \hat{i}+\hat{j}-3 \hat{k}$

Equation of plane

$-2(x+1)+1(y-0)-3(z+2)=0$

$-2 x+y-3 z-8=0$

$2 x-y+3 z+8=0$

$a+b+c=4$

Leave a comment