Question:
Let the number 2,b,c be in an A.P. and
$\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & \mathrm{~b} & \mathrm{c} \\ 4 & \mathrm{~b}^{2} & \mathrm{c}^{2}\end{array}\right] .$ If $\operatorname{det}(\mathrm{A}) \in[2,16]$, then $\mathrm{c}$
lies in the interval :
Correct Option: , 4
Solution:
put $\mathrm{b}=\frac{2+\mathrm{c}}{2}$ in determinant of $\mathrm{A}$
$|A|=\frac{c^{3}-6 c^{2}+12 c-8}{4} \in[2,16]$
$\Rightarrow(\mathrm{c}-2)^{3} \in[8,64]$
$\Rightarrow \mathrm{c} \in[4,6]$