Let the mean and variance of four numbers

Question:

Let the mean and variance of four numbers $3,7, x$ and $y(x>y)$ be 5 and 10 respectively. Then the mean of four numbers $3+2 x, 7+2 y, x+y$ and

$x-y$ is_________

Solution:

$5=\frac{3+7+x+y}{4} \Rightarrow x+y=10$

$\operatorname{Var}(x)=10=\frac{3^{2}+7^{2}+x^{2}+y^{2}}{4}-25$

$140=49+9+x^{2}+y^{2}$

$x^{2}+y^{2}=82$

$x+y=10$

$\Rightarrow(\mathrm{x}, \mathrm{y})=(9,1)$

Four numbers are $21,9,10,8$

Mean $=\frac{48}{4}=12$

Leave a comment