Let the function

Question:

Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $k=1,2$,

3 ,.... Then for all $x \in R$, the value of $\mathrm{f}_{4}(\mathrm{x})-\mathrm{f}_{6}(\mathrm{x})$ is equal to :-

  1. $\frac{5}{12}$

  2. $\frac{-1}{12}$

  3. $\frac{1}{4}$

  4. $\frac{1}{12}$


Correct Option: , 4

Solution:

$f_{4}(x)-f_{6}(x)$

$=\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right)-\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right)$

$=\frac{1}{4}\left(1-\frac{1}{2} \sin ^{2} 2 x\right)-\frac{1}{6}\left(1-\frac{3}{4} \sin ^{2} 2 x\right)=\frac{1}{12}$

Leave a comment