Question:
Let [t] denote the greatest integer less than or equal to $t$. Let $f(x)=x-[x], g(x)=1-x+[x]$, and $h(x)=\min \{f(x), g(x)\}, x \in[-2,2] .$ Then $h$ is :
Correct Option: 1,
Solution:
$\min \{x-[x], 1-x+[x]\}$
$h(x)=\min \{x-[x], 1-[x-[x])\}$
$\Rightarrow \quad$ always continuous in $[-2,2]$
but non differentiable at 7 Points