Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where $/$ is the identity matrix of order 2 and $n \in \mathbf{N}$
It is given that $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
To show: $\quad \mathrm{P}(n):(a I+b A)^{n}=a^{n} I+n a^{n-1} b A, n \in \mathbf{N}$
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
$\mathrm{P}(1):(a I+b A)=a I+b a^{0} A=a I+b A$
Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.
That is,
$\mathrm{P}(k):(a I+b A)^{k}=a^{k} I+k a^{k-1} b A$
Now, we prove that the result is true for n = k + 1.
Consider
$\begin{aligned}(a I+b A)^{k+1} &=(a I+b A)^{k}(a I+b A) \\ &=\left(a^{k} I+k a^{k-1} b A\right)(a I+b A) \\ &=a^{k+1} I+k a^{k} b A I+a^{k} b I A+k a^{k-1} b^{2} A^{2} \\ &=a^{k+1} I+(k+1) a^{k} b A+k a^{k-1} b^{2} A^{2} \end{aligned}$......(1)
Now, $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$
From (1), we have:
$\begin{aligned}(a I+b A)^{k+1} &=a^{k+1} I+(k+1) a^{k} b A+O \\ &=a^{k+1} I+(k+1) a^{k} b A \end{aligned}$
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have:
$(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], n \in \mathbf{N}$