Let S = the set of points inside the square,

Question:

Let S = the set of points inside the square, T = the set of points inside the triangle and C = the set of points inside the circle. If the triangle and circle intersect each other and are contained in a square. Then,

(a) S ∩ T ∩ C = ϕ

(b) S ∪ T ∪ C = C

(c) S ∪ T ∪ C = S

(d) S ∪ T = S ∩ C

Solution:

Let S = the set of points inside the square

T = the set of points inside the triangle

C = the set of points inside circle

Given triangle and circle intersect each other and are contained in a square

i.e T and C are in square

⇒ S ⋃ T ⋃ C = S

Hence, the correct answer is option C.

Leave a comment