Let S_n denote the sum of the first n terms of an A.P.

Question:

Let $S_{n}$ denote the sum of the first $n$ terms of an A.P. If $\mathrm{S}_{4}=16$ and $\mathrm{S}_{6}=-48$, then $\mathrm{S}_{10}$ is equal to:

  1. $-320$

  2. $-260$

  3. $-380$

  4. $-410$


Correct Option: 1

Solution:

$2\{2 \mathrm{a}+3 \mathrm{~d}\}=16$

$3(2 \mathrm{a}+5 \mathrm{~d})=-48$

$2 \mathrm{a}+3 \mathrm{~d}=8$

$2 \mathrm{a}+5 \mathrm{~d}=-16$

$\mathrm{d}=-12$

$\mathrm{S}_{10}=5\{44-9 \times 12\}$

$=-320$

Leave a comment