Question:
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right|$. Then $S$ :
Correct Option: , 2
Solution:
Let $3^{x}=y$
$\therefore \quad y(y-1)+2=|y-1|+|y-2|$
Case 1: when $y>2$
$y^{2}-y+2=y-1+y-2$
$y^{2}-3 y+5=0$
$\because \quad D<0[\therefore$ Equation not satisfy. $]$
Case 2: when $1 \leq y \leq 2$
$y^{2}-y^{2}+2=y-1-y+2$
$y^{2}-y+1=0$
$\because \quad D<0[\therefore$ Equation not satisfy.]
Case 3: when $y \leq 1$
$y^{2}-y+2=-y+1-y+2$
$y^{2}+y-1=0$
$\therefore y=\frac{-1+\sqrt{5}}{2}$
$=\frac{-1-\sqrt{5}}{2}$ $[\therefore$ Equation not Satisfy $]$
$\therefore$ Only one $-1+\frac{\sqrt{5}}{2}$ satisfy equation