Question:
Let $\mathrm{S}$ be the set of all functions $f:[0,1] \rightarrow \mathrm{R}$, which are continuous on $[0,1]$ and differentiable on $(0,1)$. Then for every $f$ in $\mathrm{S}$, there exists a $\mathrm{c} \in(0,1)$, depending on $f$, such that
Correct Option: , 2
Solution: