Let S be the set of all

Question:

Let $S$ be the set of all $\lambda \in \mathbf{R}$ for which the system of linear equations

$2 x-y+2 z=2 \quad x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

has no solution. Then the set $S$

 

  1. (1) contains more than two elements.

  2. (2) is an empty set.

  3. (3) is a singleton.

  4. (4) contains exactly two elements.


Correct Option: , 4

Solution:

$\Delta=\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & -2 & \lambda \\ 1 & \lambda & 1\end{array}\right|=-(\lambda-1)(2 \lambda+1)$

$\Delta_{1}=\left|\begin{array}{ccc}2 & -1 & 2 \\ -4 & -2 & \lambda \\ 4 & \lambda & 1\end{array}\right|=-2\left(\lambda^{2}+6 \lambda-4\right)$

For no solution $\Delta=0$ and at least one of $\Delta_{1}, \Delta_{2}$ and $\Delta_{3}$ is non-zero.

$\therefore \Delta=0 \Rightarrow \lambda=1,-\frac{1}{2}$ and $\Delta_{1} \neq 0$

Hence, $S=\left\{1,-\frac{1}{2}\right\}$

Leave a comment