Let $R^{+}$be the set of all positive real numbers. Let $f: R+\rightarrow R: f(x)=\log _{e} x$.
Find
(i) Range (f)
(ii) $\left\{x: x \in R^{+}\right.$and $\left.f(x)=-2\right\}$.
(iii) Find out whether $f(x+y)=f(x) . f(y)$ for all $x, y \in R$.
Given that $\mathrm{f}: \mathrm{R}+\rightarrow \mathrm{R}$ such that $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$
To find: (i) Range of $f$
Here, $f(x)=\log _{e} x$
We know that the range of a function is the set of images of elements in the domain.
$\therefore$ The image set of the domain of $\mathrm{f}=\mathrm{R}$
Hence, the range of f is the set of all real numbers.
To find: (ii) $\left\{x: x \in R^{+}\right.$and $\left.f(x)=-2\right\}$
We have, $f(x)=-2 \ldots$ (a)
And $f(x)=\log _{e} x \ldots(b)$
From eq. (a) and (b), we get
$\log _{e} x=-2$
Taking exponential both the sides, we get
$\Rightarrow e^{\log _{e} x}=e^{-2}$
$\left[\because\right.$ Inverse property $\cdot$ i. e $\left.b^{\log _{b} x}=x\right]$
$\Rightarrow x=e^{-2}$
$\therefore\left\{x: x \in R^{+}\right.$and $\left.f(x)=-2\right\}=\left\{e^{-2}\right\}$
To find: (iii) $f(x y)=f(x)+f(y)$ for all $x, y \in R$
We have,
$f(x y)=\log _{e}(x y)$
$=\log _{e}(x)+\operatorname{loge}(y)$
[Product Rule for Logarithms]
$=f(x)+f(y)\left[\because f(x)=\log _{e} x\right]$
$\therefore f(x y)=f(x)+f(y)$ holds.