Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
We observe the following properties of R.
Reflexivity: Let $(a, b)$ be an arbitrary element of the set A. Then,
$(a, b) \in A$
$\Rightarrow a b=b a$
$\Rightarrow(a, b) R(a, b)$
Thus, $R$ is reflexive on $A$.
Symmetry : Let $(x, y)$ and $(u, v) \in A$ such that $(x, y) R(u, v)$. Then,
$x v=y u$
$\Rightarrow v x=u y$
$\Rightarrow u y=v x$
$\Rightarrow(u, v) R(x, y)$
So, $R$ is symmetric on $A$.
Transitivity: Let $(x, y),(u, v)$ and $(p, q) \in R$ such that $(x, y) R(u, v)$ and $(u, v) R(p, q)$.
$\Rightarrow x v=y u$ and $u q=v p$
Multiplying the corresponding sides, we get
$x v \times u q=y u \times v p$
$\Rightarrow x q=y p$
$\Rightarrow(x, y) R(p, q)$
So, $R$ is transitive on $A$.
Hence, R is an equivalence relation on A