Let p, q, r be three statements such that

Question:

Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $\mathrm{F}$. Then the truth values of $p, q, r$ are respectively:

  1. (1) $\mathrm{T}, \mathrm{F}, \mathrm{T}$

  2. (2) T, T, T

  3. (3) $\mathrm{F}, \mathrm{T}, \mathrm{F}$

  4. (4) $\mathrm{T}, \mathrm{T}, \mathrm{F}$


Correct Option: , 4

Solution:

$(p \wedge q) \rightarrow(\sim q \vee r)$

$=\sim(p \wedge q) \vee(\sim q \vee r)$

$=(\sim p \vee \sim q) \vee(\sim q \vee r)$

$=(\sim p \vee \sim q \vee r)$

$\because(\sim p \vee \sim q \vee r)$ is false, then $\sim p, \sim q$ and $r$ all these must

be false.

$\Rightarrow p$ is true, $q$ is true and $r$ is false.

Leave a comment