Let $P$ be an arbitrary point having sum of the squares of the distance from the planes $\mathrm{x}+\mathrm{y}+\mathrm{z}=0, l \mathrm{x}-\mathrm{nz}=0$ and $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$ equal to 9 . If the locus of the point $P$ is $x^{2}+y^{2}+z^{2}=9$, then the value of $l-n$ is equal to
Let point $\mathrm{P}$ is $(\alpha, \beta, \gamma)$
$\left(\frac{\alpha+\beta+\gamma}{\sqrt{3}}\right)^{2}+\left(\frac{\ell \alpha-n \gamma}{\sqrt{\ell^{2}+n^{2}}}\right)^{2}+\left(\frac{\alpha-2 \beta+\gamma}{\sqrt{6}}\right)^{2}=9$
Locus is
$\frac{(x+y+z)^{2}}{3}+\frac{(\ell x-n z)^{2}}{\ell^{2}+n^{2}}+\frac{(x-2 y+z)^{2}}{6}=9$
$x^{2}\left(\frac{1}{2}+\frac{\ell^{2}}{\ell^{2}+n^{2}}\right)+y^{2}+z^{2}\left(\frac{1}{2}+\frac{n^{2}}{\ell^{2}+n^{2}}\right)+2 z x\left(\frac{1}{2}-\frac{\ell n}{\ell^{2}+n^{2}}\right)-9=0$
Since its given that $x^{2}+y^{2}+z^{2}=9$
After solving $\ell=\mathrm{n}$