Let $n$ be a fixed positive integer. Define a relation $R$ on $Z$ as follows:
$(a, b) \in R \Leftrightarrow a-b$ is divisible by $n$.
Show that R is an equivalence relation on Z.
We observe the following properties of R. Then,
Reflexivity:
Let $a \in N$
Here,
$a-a=0=0 \times n$
$\Rightarrow a-a$ is divisible by $n$
$\Rightarrow(a, a) \in R$
$\Rightarrow(a, a) \in R$ for all $a \in Z$
So, $R$ is reflexive on $Z$.
Symmetry
Let $(a, b) \in R$
Here,
$a-b$ is divisible by $n$
$\Rightarrow a-b=n p$ for some $p \in Z$
$\Rightarrow b-a=n(-p)$
$\Rightarrow b-a$ is divisible by $n$ $[p \in Z \Rightarrow-p \in Z]$
$\Rightarrow(b, a) \in R$
So, $R$ is symmetric on $Z$.
Transitivity:
Let $(a, b)$ and $(b, c) \in R$
Here, $a-b$ is divisible by $n$ and $b-c$ is divisible by $n$.
$\Rightarrow a-b=n p$ for some $p \in Z$
and $b-c=n q$ for some $q \in Z$
Adding the above two, we get
$a-b+b-c=n p+n q$
$\Rightarrow a-c=n(p+q)$
Here, $p+q \in Z$
$\Rightarrow(a, c) \in R$ for all $a, c \in Z$
So, $R$ is transitive on $Z$.
Hence, R is an equivalence relation on Z.