Let m be the midpoint and u be the upper class limit of a class in a continuous frequency distribution.

Question:

Let m be the midpoint and u be the upper class limit of a class in a continuous frequency distribution. The lower class limit of the class is
(a) 2m − u
(b) 2m + u
(c) m − u
(d) m + u

 

Solution:

(a) 2m -">- u

Given:
Mid value = m
Upper limit = u

We know:

$\frac{\text { Lower limit+Upper limit }}{2}=$ Mid value

$\Rightarrow \frac{\text { Lower limit }+u}{2}=m$

$\Rightarrow$ Lower limit $+u=2 m$

$\Rightarrow$ Lower limit $=2 m-u$

 

 

Leave a comment