Let L be the lower class boundary of a class in a frequency distribution and m be the midpoint of the class.

Question:

Let L be the lower class boundary of a class in a frequency distribution and m be the midpoint of the class. Which one of the following is the upper class boundary of the class?

(a) $m+\frac{(m+L)}{2}$

(b) $L+\frac{m+L}{2}$

(c) $2 m-L$

(d) $m-2 L$

 

Solution:

(c) 2m-">-L

Mid value $=\frac{\text { Lower limit+Upper limit }}{2}$

$\Rightarrow m=\frac{L+U}{2}$

$\Rightarrow U=2 m-L$

$\therefore$ Upper class boundary of the class $=2 m-L$

 

 

Leave a comment