Let $I$ be any interval disjoint from $(-1,1)$. Prove that the function $f$ given by
$f(x)=x+\frac{1}{x}$ is strictly increasing on $\mathrm{I} .$
We have,
$f(x)=x+\frac{1}{x}$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}$
Now,
$f^{\prime}(x)=0 \Rightarrow \frac{1}{x^{2}}=1 \Rightarrow x=\pm 1$
The points $x=1$ and $x=-1$ divide the real line in three disjoint intervals i.e., $(-\infty,-1),(-1,1)$, and $(1, \infty)$.
In interval (−1, 1), it is observed that:
$-1
$\Rightarrow x^{2}<1$
$\Rightarrow 1<\frac{1}{x^{2}}, x \neq 0$
$\Rightarrow 1-\frac{1}{x^{2}}<0, x \neq 0$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}<0$ on $(-1,1) \sim\{0\} .$
$\therefore f$ is strictly decreasing on $(-1,1) \sim\{0\}$.
In intervals $(-\infty,-1)$ and $(1, \infty)$, it is observed that:
$x<-1$ or $1
$\Rightarrow x^{2}>1$
$\Rightarrow 1>\frac{1}{x^{2}}$
$\Rightarrow 1-\frac{1}{x^{2}}>0$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}>0$ on $(-\infty,-1)$ and $(1, \infty)$.
$\therefore f$ is strictly increasing on $(-\infty, 1)$ and $(1, \infty)$.
Hence, function f is strictly increasing in interval I disjoint from (−1, 1).
Hence, the given result is proved.