let fk(x)

Question:

Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $\mathrm{k}=1,2,3, \ldots$ Then for

all $\mathrm{x} \in \mathrm{R}$, the value of $f_{4}(x)-f_{6}(x)$ is equal to :

 

  1. (1) $\frac{1}{12}$

  2. (2) $\frac{1}{4}$

  3. (3) $\frac{-1}{12}$

  4. (4) $\frac{5}{12}$


Correct Option: 1

Solution:

$f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$

$f_{4}(x)=\frac{1}{4}\left[\sin ^{4} x+\cos ^{4} x\right]$

$=\frac{1}{4}\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-\frac{(\sin 2 x)^{2}}{2}\right]$

$=\frac{1}{4}\left[1-\frac{(\sin 2 x)^{2}}{2}\right]$

$f_{6}(x)=\frac{1}{6}\left[\sin ^{6} x+\cos ^{6} x\right]$

$=\frac{1}{6}\left[\left(\sin ^{2} x+\left(\cos ^{2} x\right)-\frac{3}{4}\left(\sin ^{2} x\right)^{2}\right]\right.$

$=\frac{1}{6}\left[1-\frac{3}{4}(\sin 2 x)^{2}\right]$

Now $f_{4}(x)-f_{(6)}(x)=\frac{1}{4}-\frac{1}{6}-\frac{(\sin 2 x)^{2}}{8}+\frac{1}{8}(\sin 2 x)^{2}$

$=\frac{1}{12}$

 

Leave a comment