Question:
Let $f(x)=\log _{\mathrm{e}}(\sin x),(0
Correct Option: , 2
Solution:
$f(x)=\ln (\sin x), g(x)=\sin ^{-1}\left(e^{-x}\right)$
$\Rightarrow f(g(x))=\ln \left(\sin \left(\sin ^{-1} e^{-x}\right)\right)=-x$
$\Rightarrow f(g(x))=-\alpha$
But given that $(f o g)(\alpha)=b$
$\therefore-\alpha=b$ and $f^{\prime}(g(\alpha))=a$, i.e., $a=-1$
$\therefore a \alpha^{2}-b \alpha-a=-\alpha^{2}+\alpha^{2}-(-1)$
$\Rightarrow a \alpha^{2}-b \alpha-a=1$