Question:
Let $f(x)=\frac{\alpha x}{x+1}, x \neq-1$. Then write the value of a satisfying $f(f(x))=x$ for all $x \neq-1$.
Solution:
Given:
$f(x)=\frac{\alpha x}{x+1}, x \neq-1$
Since $f(f(x))=x$
$\frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\frac{\alpha x}{x+1}+1}=x$
$\Rightarrow \frac{\alpha^{2} x}{\alpha x+x+1}=x$
$\Rightarrow \alpha^{2} x-\alpha x^{2}-\left(x^{2}+x\right)=0$
Solving | the quadratic lequation in $\alpha:$
$\alpha=\frac{x^{2} \pm \sqrt{x^{4}+4 x\left(x^{2}+x\right)}}{2 x}$
$\Rightarrow \alpha=x+1$ or $-1$
Since, $\alpha \neq x+1$
$\alpha=-1$