Let f : R→R be defined as

Question:

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)= \begin{cases}\frac{x^{3}}{(1-\cos 2 x)^{2}} \log _{e}\left(\frac{1+2 x e^{-2 x}}{\left(1-x e^{-x}\right)^{2}}\right) & , \quad x \neq 0 \\ \alpha & , \quad x=0\end{cases}$ If $f$ is continuous at $\mathrm{x}=0$, then $\alpha$ is equal to :

  1. 1

  2. 3

  3. 0

  4. 2


Correct Option: 1

Solution:

For continuity

$\lim _{x \rightarrow 0} \frac{x^{3}}{4 \sin ^{4} x}\left(\ell n\left(1+2 x e^{-2 x}\right)-2 \ell n\left(1-x e^{-x}\right)\right)$

$=\alpha$

$\lim _{x \rightarrow 0} \frac{1}{4 x}\left[2 x e^{-2 x}+2 x e^{-x}\right]=\alpha$

$=\frac{1}{4}(4)=\alpha=1$

Leave a comment