Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$. Then,
(a) f is a bijection
(b) f is an injection only
(c) f is surjection on only
(d) f is neither an injection nor a surjection
(d) f is neither an injection nor a surjection
$f: R \rightarrow R$
$f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$
For $x=-2$ and $-3 \in R$
$f(-2)=\frac{e^{|-2|}-e^{2}}{e^{-2}+e^{2}}$
$=\frac{e^{2}-e^{2}}{e^{-2}+e^{2}}$
$=0$
$\& f(-3)=\frac{e^{|-3|-e^{3}}}{e^{-3}+e^{3}}$'
$=\frac{e^{3}-e^{3}}{e^{-3}+e^{3}}$
$=0$
Hence, for different values of $x$ we are getting same values of $f(x)$
That means, the given function is many one.
Therefore, this function is not injective.
For $x<0$
$f(x)=0$
$f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$=\frac{e^{x}+e^{-x}}{e^{x}+e^{-x}}-\frac{2 e^{-x}}{e^{x}+e^{-x}}$
$=1-\frac{2 e^{-x}}{e^{x}+e^{-x}}$
The value of $\frac{2 e^{-x}}{e^{x}+e^{-x}}$ is always positive.
Therefore, the value of $f(x)$ is always less than 1
Numbers more than 1 are not included in the range but they are included in codomain.
As the codomain is $\mathrm{R}$.
$\therefore$ Codomain $\neq$ Range
Hence, the given function is not onto.
Therefore, this function is not surjective .