Let $f: R-\{n\} \rightarrow R$ be a function defined by
$f(x)=\frac{x-m}{x-n}$, where $m \neq n .$ Then,
(a) f is one-one onto
(b) f is one-one into
(c) f is many one onto
(d) f is many one into
Injectivity:
Let x and y be two elements in the domain R-{n}, such that
$f(x)=f(y)$
$\Rightarrow \frac{x-m}{x-n}=\frac{y-m}{y-n}$
$\Rightarrow(x-m)(y-n)=(x-n)(y-m)$
$\Rightarrow x y-n x-m y+m n=x y-m x-n y+m n$
$\Rightarrow(m-n) x=(m-n) y$
$\Rightarrow x=y$
So, f is one-one.
Surjectivity:
Let y be an element in the co domain R, such that
$f(x)=y$
$\Rightarrow \frac{x-m}{x-n}=y$
$\Rightarrow x-m=x y-n y$
$\Rightarrow n y-m=x y-x$
$\Rightarrow n y-m=x(y-1)$
$\Rightarrow x=\frac{n y-m}{y-1}$,which is not defined for $y=1$
So, $1 \in R$ (co domain) has no pre image in $R$ - $\{n\}$
$\Rightarrow f$ is not onto.
Thus, the answer is (b).