Let $f: N \rightarrow N$ be a function defined as $f(x)=9 x^{2}+6 x-5$. Show that $f: N \rightarrow S$, where $S$ is the range of $f$, is invertible. find the inverse of $f$ and hence find $f^{-1}(43)$ and $f^{-1}(163)$.
We have,
$f: N \rightarrow N$ is a function defined as $f(x)=9 x^{2}+6 x-5$
Let $y=f(x)=9 x^{2}+6 x-5$
$\Rightarrow y=9 x^{2}+6 x-5$
$\Rightarrow y=9 x^{2}+6 x+1-1-5$
$\Rightarrow y=\left(9 x^{2}+6 x+1\right)-6$
$\Rightarrow y=(3 x+1)^{2}-6$
$\Rightarrow y+6=(3 x+1)^{2}$
$\Rightarrow \sqrt{y+6}=3 x+1 \quad(\because y \in N)$
$\Rightarrow \sqrt{y+6}-1=3 x$
$\Rightarrow x=\frac{\sqrt{y+6}-1}{3}$
$\Rightarrow g(y)=\frac{\sqrt{y+6}-1}{3} \quad$ [Let $\left.x=g(y)\right]$
Now,
$f o g(y)=f[g(y)]$
$=f\left(\frac{\sqrt{y+6}-1}{3}\right)$
$=9\left(\frac{\sqrt{y+6}-1}{3}\right)^{2}+6\left(\frac{\sqrt{y+6}-1}{3}\right)-5$
$=9\left(\frac{y+6-2 \sqrt{y+6}+1}{9}\right)+2(\sqrt{y+6}-1)-5$
$=y+6-2 \sqrt{y+6}+1+2 \sqrt{y+6}-2-5$
$=y$
$=I_{Y}$, Identity function
$g o f(x)=g[f(x)]$
$=g\left(9 x^{2}+6 x-5\right)$
$=\frac{\sqrt{\left(9 x^{2}+6 x-5\right)+6}-1}{3}$
$=\frac{\sqrt{\left(9 x^{2}+6 x+1\right)-1}}{3}$
$=\frac{\sqrt{(3 x+1)^{2}-1}}{3}$
$=\frac{(3 x+1)-1}{3}$
$=\frac{3 x}{3}$
$=x$
$=I_{X}$, Identity function
Since, fog(y) and gof(x) are identity function.
Thus, f is invertible.
So, $f^{-1}(x)=g(x)=\frac{\sqrt{x+6}-1}{3}$.
Now,
$f^{-1}(43)=\frac{\sqrt{43+6}-1}{3}=\frac{\sqrt{49}-1}{3}=\frac{7-1}{3}=\frac{6}{3}=2$
And $f^{-1}(163)=\frac{\sqrt{163+6}-1}{3}=\frac{\sqrt{169}-1}{3}=\frac{13-1}{3}=\frac{12}{3}=4$