Let f be a real valued function,

Question:

Let $\mathrm{f}$ be a real valued function, defined on $\mathrm{R}-\{-1,1\}$ and given by

$f(x)=3 \log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$

Then in which of the following intervals, function $f(x)$ is increasing?

  1. $(-\infty,-1) \cup\left(\left[\frac{1}{2}, \infty\right)-\{1\}\right)$

  2. $(-\infty, \infty)-\{-1,1\}$

  3. $\left(-1, \frac{1}{2}\right]$

  4. $\left(-\infty, \frac{1}{2}\right]-\{-1\}$


Correct Option: 1

Solution:

$f(x)=3 \ell n(x-1)-3 \ell n(x+1)-\frac{2}{x-1}$

$f^{\prime}(x)=\frac{3}{x-1}-\frac{3}{x+1}+\frac{2}{(x-1)^{2}}$

$f^{\prime}(x)=\frac{4(2 x-1)}{(x-1)^{2}(x+1)}$

$f^{\prime}(x) \geq 0$

$\Rightarrow \quad x \in(-\infty,-1) \cup\left[\frac{1}{2}, 1\right) \cup(1, \infty)$

Leave a comment