Let $f$ be a differentiable function such that $f(1)=2$ and $f^{\prime}(x)=f(x)$ for all $x \in R$. If $h(x)=f(f(x))$, then $h^{\prime}(1)$ is equal to :
Correct Option: , 2
Since, $\quad f^{\prime}(x)=f(x)$
Then, $\quad \frac{f^{\prime}(x)}{f(x)}=1$
$\Rightarrow \frac{f^{\prime}(x)}{f(x)}=d x \Rightarrow \frac{f^{\prime}(x)}{f(x)} \quad d x=\int d x$
$\Rightarrow \quad \ln |f(x)|=x+c$
$f(x)=\pm e^{x+c}$......(1)
Since, the given condition
$f(1)=2$
From eq $^{\mathrm{n}}(1) \quad f(x)=e^{x+c}=e^{c} e^{x}$
Then, $f(1)=e^{c} \cdot e^{1}$
$\Rightarrow \quad 2=e^{c} \cdot e$
$\Rightarrow \quad \frac{2}{e}=e^{c}$
Then, from eqn (1)
$f(x)=\frac{2}{e} e^{x}$
$\Rightarrow \quad f^{\prime}(x)=\frac{2}{e} e^{x}$
Now $\quad h(x)=f(f(x))$
$\Rightarrow \quad h^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$
$h^{\prime}(1)=f^{\prime}(2) \cdot f^{\prime}(1)=\frac{2}{e} e^{2} \cdot \frac{2}{e} \cdot e=4 e$